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Scaling exponents and clustering coefficients of a growing random network

Haijun Zhou
Max-Planck-Institute of Colloids and Interfaces, Potsdam 14424, Germany
(Received 7 March 2002; published 25 July 2p02

The statistical property of a growing scale-free network is studied based on an earlier model proposed by
Krapivsky, Rodgers, and Redng?hys. Rev. Lett86, 5401(2001], with the additional constraints of forbid-
ding self-connection and multiple links of the same direction between any two nodes. Scaling exponents in the
range of 1-2 are obtained through Monte Carlo simulations and various clustering coefficients are calculated,
one of which,C,,, is of the order of 10%, indicating that the network resembles a small world. The
out-degree distribution has an exponential cutoff for large out degree.
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I. INTRODUCTION nodes in the system, an(d) the clustering coefficient is
independent ofN and is thus much greater than that of a

To study the statistical property of a complex system com+andom network £(k)/N, where (k) denotes the average
posed of many interacting individual components, it is oftennode degree of the netwgrkOn the theoretical side, it was
helpful to map the system into a network of nodes and linksconfirmed that growing networks generated by the mecha-
(edges$. Each node in this network represents one componertism of preferential attachment will typically have diameter
of the real system and the interaction, if there is any, betweencales as IfY) (see, for example, Refl10]). However, the
two components is denoted by an edge, either directed arriginal Barabai-Albert model[1,2] predicted a very small
undirected, between the two corresponding nodes in the netlustering coefficienC~N~%’% The clustering coefficients
work. One quantity of interest is the node-degree profile offor other model§4—6] were not reported.
the formed network: How does(k), the total number of To improve our understanding on scale-free networks, in
nodes with a given numbek of links attached(the node this work two questions are addressed: Will it be possible to
degreg, scales withk? Empirical observations revealed that generate a scale-free network with scaling exponeqt2
many social and biological networks have the scale-fredbased on the preferential attachment mechanism? Will it be

property[1,2], that is, possible for a scale-free network generated in this way to
have relatively constant clustering coefficients? We answer
n(k)~k=” (1) these questions confirmatively by studying a revised
Krapivsky-Rodgers-Redner modé¢#] with Monte Carlo
ask becomes large enough. The scaling exponei# typi-  simulation approach.

cally in the range of Z »<<3; but there are evidences that
some networks have scaling exponents in the range of 1-2
[3] while a few other networks have scaling exponents larger
than 3 (for a collection of experimental data, please refer to The Krapivsky-Rodgers-Redner moddl] is a general-
Table Il of Ref.[2]). ized version of the original BarabaAlbert model on scale-

To explain the scale-free characteristics, one appealinffee networks[1]. It has the following key elementgi)
mechanism is to assume that the netwkkeeps growing edges are directedii) new nodes are added into the network
and,(2) during this growth process, new edges are generatednd are attached preferentially to existing nodes with larger
and are attached preferentially to those nodes that have dh degrees; andiii) creation of edges between “old” nodes
ready been attached by a large number of ed@ésBased are possible and a newly created edge also prefers to attach
on this mechanism several models have been suggestés nodes with larger degrees. This model is general in the
[1,4—6], but they predicted the scaling exponentto be  sense that it takes into account directional interactions of the
greater than 2, thus failed to explain the behavior of thoseeal network systems, and that the growth of the network is
networks with smallew. In Ref.[7] this “preferential attach- not solely caused by the inclusion of new nodes but also as a
ment” mechanism was questioned partly because of this apresult of the increased interactions among the existing nodes
parent discrepancy between theory and empirical data. Iof the system. It can be corresponded to the real systems
Ref.[8] it was shown that if one assumes that a network isncluding the World Wide We WWW), the Internet, the
growing accelerately, it is possible to generate scaling expofood web, the transportation network, the email network, etc.
nent in the range between 3/2 and 2. However, it is still noBecause of its generality, we reexamine this model in the
clear whether or not this condition is absolutely necessary tpresent work to illustrate the property of growing scale-free
explain experimental observations. network.

An emerging property of almost all the so-far studied We noticed in the original Krapivsky-Rodgers-Redner
scale-free networks is that they can at the same time be clasodel[4] that the growth process permits the following two
sified as small-world network®]. That is, (i) the diameter possibilities illustrated in Fig. 1(1) a directed edge can
of the network scales as NJ, whereN is the total number of originate from and end into the same nddelf-connectioh

II. THE GROWING NETWORK MODEL
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(A) (B) In the above equatiok;,(8), the in degree, is the total num-
ber of incoming edges of nodg; \ is a constant signifying
the “initial attractiveness” of a nod¢6]; andE is the total
number of edges in the system before this new edge is cre-
ated.

(ii) With probabilityg=1—p, a new edge pointing from

one nodea to another node3 is created, provided thdf)
E<N(N-1), (2) « andB are not identical, an3) there is
no preexisting directed edge from to 8. The probability

_ FIG. 1. Self-connectiori@ and multiconnection of the same hat and g will be selected is governed by the probability
direction (b) are forbidden in the present simulation.
[Koul( @) + p][Kin(B) +A]

and (2) there can be more than one edge of the same direc-  Pconnect@,8) = , (5
tion between two nodeémulticonnection. Allowing these 2 E' [Kout ¥) + ][ Kin(8) + N\ ]
two possibilities makes analytical calculations possible and vy 9
these authors found that in the growing network, both the .
in-degree and the out-degree distributions follow the powe}NherekO‘“(q) dgngtes the .OUt degreg of node’,u Is another
law [4]: constant with similar physical meaning ®sX s denotes the
summation over all the node% which is not yet approached
by a directed edge from nodg
For large system sizN it turns out to be quite inefficient
and complicated when performing proceddi¢ based on a
Nou K) ~ K™ Yout,  2<w =1+ 1/(1—p)+up/(l—p)<cx, direct application of Eq(5). This is partly because of the fact
3 that, after a new edge has been created between moded
B, one must update the value of the summation in(&pby
(p, \, and u are the three adjustable model parameters O(N) iterations. To speed up procedui®, the selection of
Although the permission of self-connections and multicon-two nodes and the connection of an edge between them is
nections might be reasonable for some netwdiksch as finished actually through the following way:
WWW pages, in which a page can have several links to (1) Select an outgoing node with probability [ Ko,{ «)
another page and it can have a link to bring the reader from- . ]/(E+ uN).
one portion to another portion of the same pagemay fail (2) Select an incoming nodg with probability [Kin(/3)
for other kinds of networkgin a co-authorship network1], =~ +AJ/(E+AN).
it is meaningless for an author to be the co-author of himself/ (3) If a and 8 are identical, or if there is already a di-
herself; and in a food wefd2], there is at most one edge of rected edge fromx to 3, repeat stepgl) and (2); if else,
the same direction between two spegieBecause of the accepte andB and update the system.
preferential attachment mechanism, if a node already has a It is not difficult to prove that by this method the prob-
large number of incoming and outgoing edges, it has a goodbility for nodesa andg to be chosen is identical to E().
possibility to form self-connections and by doing so its The algorithm code is written in €+ language[13],
dominance is further amplified; the inclusion of multiconnec-with some of its standard containdiscludingmapandse}
tion could lead to similar effects. As a result, edges maybeing exploited.
concentrate on just few nodes, making the scaling behavior To estimate the scaling exponents from the simulated
steeper. In the present work, the two kinds of edges listed inlata, we use two methods. One can directly fit the data with
Fig. 1 are discounted. Because of the reasoning outlineffg. (1). Alternatively, one can define the cumulative degree
above, scaling exponents<ly<2 might occur in a growing distribution by
network without self-connection and multiconnection. This
point will be checked by Monte Carlo simulation. PK)= > n(k)~k D), 6)

k'=k

Nin(K)~k™"n,  2<p;,=2+pr<o, )

Iil. MONTE CARLO SETUP and from the cumulative distribution data an estimation of

The revised Krapivsky-Rodgers-Redner model is studiedhe value ofv could be obtained.

by Monte Carlo(MC) simulation. Started with a single node,

at each step: IV. DEGREE DISTRIBUTION OF THE GROWING
(i) With probability p, a new node is created and a di- NETWORK

rected edge from it to an existing target ng@lés set up. Of . .
all the N existing nodesp will be selected with probability In the growing network mOd‘?" there are three adju_stable
[4] parameters, namelg, A, andw. Figure 2 shows the relations

between the average number of nodes and the in degree and
out degree for both the original and the revised Krapivsky-

Pk B)= Kin(B) + A 4) Rodgers-Redner models. Figure 3 shows the corresponding
attac E+AN cumulative degree distributions for the two models. The net-
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FIG. 2. The profiles of in-degre@) and out-degreéb) distri- FIG. 3. In-degreda) and out-degreéb) cumulative distribution

bution atp=0.133 334 A =0.75, andu = 3.55, after a growing pro-  for the data sets in Fig. 2. The solid lines correspond to the original
cess of 10 steps. Square symbols are the data for the originainodel, and the dashed lines to the revised model. From these
Krapivsky-Rodgers-Redner model and diamonds are the data fofyrves, we estimate,,=2.066+0.014 (the original model and

the revised model. Each data point is the average ove(dizd vin=1.925* 0.007 (the revised modgl v,,=2.626+0.036 for the
monds or 10 (squareprealizations of the network. The thin solid original model. The out-degree cumulative distribution of the re-
line has a slope of-2.066 in(a) and —2.626 in (b). The thin  yjsed model does not fit well to the power law. Therefore, the out-

dashed line has a slope 6f1.925 in(a) and —2.269 in(b). The  degree scaling exponent is not estimated by this method but by a
average number of nodes in the revised network is 133 271, and th@rect fit to the distribution in Fig. ®), resulting invo,= 2.269.
average number of edges is 999 984.

model, there are nodes with out degrees as largek as
work is the result oN=10° growing steps. =1.5x 10"

At p=0.133 334(a new node will be included on average  (3) The value ofn(k) is much larger in the revised model
after every 7.5 stepsh=0.75, andu=3.55, the original than in the original model for a giveki (less than the cutoff
model[4] predictsy;,=2.1 andv,,=2.7. From the MC data value). This holds both for the in-degree distribution and for
we obtain that;,=2.066+0.014 andv,,~=2.626+0.036, in  the out-degree distribution.
close agreement with the analytical values. At these same These observations lead to the following picture: By pro-
parameters, the revised model hag=1.925-0.007 and hibiting self-connection and multiconnection, edges that
vour= 2.269. Thus, exclusion of self-connection and multi- originally belonged to just few “supernodes” are now redis-
connection leads to decreased values for the scaling expdributed to the nodes of small or intermediate in and out
nents. Other quantitative differences are: degrees. Consequently, the number of nodes with small and

(1) In the revised model there is a cutoff in the in-degreeintermediate node degrees increases considerably, resulting
distribution; no node has in-degré&e>9x 10°. While in the  in a smaller scaling exponent in the power-law decrease of
original model, there are nodes with in degrees as large ake distribution and a cutoff in the tail of this distribution.
k=4x10°. In Fig. 4 we demonstrate the simulation result when the

(2) In the revised model the out-degree distribution has aprobability of node addition is changed f=0.05 (a new
exponential cutoff aroundk=250; while in the original node will be included on average after every 20 sSteysle
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growing steps for the originalsquares and the revisedcircles
model b. The parameters are set equal to that of Fig. 4, namely,
=0.05, A=0.75, andu=3.55. The thin dotted line indicates the
theoretical prediction of;,=2.075 for the original model.

function of the total growth steps. This figure strongly indi-
cates that even for an infinite system the scaling exponents
will still be less than 2.

Adamic and Hubermaf?] studied the WWW by map-
ping each web domairfrather than each web pagas a
single node, and they reported an in-degree scaling exponent
of v;,=1.94. Mossa and co-workers, upon their reinterpreta-
tion of the WWW data of Baralsaand Albert[1], reported

an exponent o= 1.25[14]. The email network studied in
Ref. [15] has a scaling exponent in the range X47
<1.82. And even smaller scaling exponents are reported in
several other network®]. To attain quantitative agreement
to these empirical data, one needs nevertheless more infor-
mation to help fixing the values of the adjustable parameters.
model. The thin solid line has slope2.018 in(a) and —2.190 in A persistent property of the revised network model is that
(b). The thin dashed line has slopel.672 in(a) and—1.764 in(b).  there is a rapid decay in the out-degree distribufiehich
In the revised network, the average number of nodes is 49 831 angccurs ak,,=~400 in Fig. 4b)]. Such a rapid decay was not
the average number of edges is 999 860. observed in the original model. This feature is also absent in
the in-degree distribution of both the revised and the original
for the other two parameters the same values are kept as |joqels  although the in-degree distribution of the revised
Fig. 2. In these parameters, the original model predigis 1\, 46| does have a cutoff for large Experimentally, it was
=2.04 (theory and 2.0180.015 (MC) and vou=2.24  tonorted that both the WWW netwofk4,16 and the emalil

(theory and 2.196:0.014 (MC); while the revised model a4y 0rk[15] show exponential cutoff in the node-degree dis-
has an in-degree exponenf,=1.672-0.003 and an out- ipution.

degree exponent,,~=1.764, both of which are markedly
smaller than 2.

Therefore, the exclusion of self-connection and multicon-
nection can change the scaling exponent of the scale-free
network dramatically when each node has a relatively large
average node degree. It can be anticipated that similar behav- As was mentioned in the Introduction, many real scale-
ior will be observed when the initial attractiveness param-free networks at the same time show small-world behavior
eters,\ and u, of each node are varied. It is therefore pos-[2], having small diameters and being highly clustered. For
sible for the present model to explain networks with scalingthe original Krapivsky-Rodgers-Redner model, it has been
exponentr<<2. reported in Ref[10] that the average minimum path scales

However, could the observation of scaling exponents 1as In(\). We anticipate this to hold also for the revised
<v<?2 be an artifact caused by finite-size effects? In Fig. 5model. Here we focus on the clustering characteristics of the
the calculated in-degree scaling exponent is plotted as eevised model system, with the parameters setting equal to

out-degree k

FIG. 4. The profiles of in-degre@) and out-degreéb) distri-
butions atp=0.05, A=0.75, ©=3.55, and 10 growing steps.
Squaregaveraged over 10 realizationsorrespond to the original
model and diamond&veraged over 20 realization® the revised

V. CLUSTER COEFFICIENTS OF
THE GROWING NETWORK
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those of Fig. 2, i.e.p=0.133334\=0.75, andu=3.55, network. Compared with the small values®f,,.;andCj,,

and a total of 10 growing steps. such a large value oF, is surprising. It suggests that the
average interaction between two nodes belonging to the
A. Mutual-connection coefficient C ,ya same downstream group of a given node is considerably

strong. How to understand this kind of asymmetry, namely,
1~C,,eCi,? We suggest the following possibility: In the

directed edge frona to each node i g, a); similarly we network_, there are some nodes that are so popular that_ alarge

defineG,(a) as the complete set of nodes that are the “up_populatmn of the whole nodes will have an edge pointing to

Stream” r?eighbors of node. |Gyqufa)| means the size of them [see .Fl_g. 2a)]. Consequently, these nodes will have

setGyoyl @) ow great possibility to belong to the downstream group _of any
Thdgwmutu.al-connection coefficient is defined as particular node, and they will also have great possibility to

be pointed to by other members of this group, making; to

be proportional to unity. However, the number of nodes de-

> |Gaowrd @) NGy @) |/|Gyowr @) cays quickly when the out degree increases to abouf 2&®

i Fig. 2b)]. Therefore, in the network there is no node that is

SO “generous” that it points to a large population of the

. R . whole network. This may make the value Gf, small. In
which signifies to what extent the downstream neighbors ofher words, it might be the existence of a steep cutoff in the

one node intersect with their upstream neighbors. The valugigegree profile that accounts for the difference in the clus-
of Cuwa @veraged over 20 realizations of the growing net'tering coefficientsC,,, and C;,
u |

work is 0.0010. This indicates that the interaction between
one node and its “neighbors” in the network is usually not
bidirectional. However, this value is still much larger than
the value for a random network of the same siaé¢ ( For a particular noder, suppose nodes e Gyou( ).

=133271) and the same average degree of out-going edg@&&ieni(a,B)=|Ggow @) NGyowB)| is the total number

DenoteGyonn( @) as thecompleteset of nodes that are the
“downstream” neighbors of noder, namely, there exists a

Crmutua™ N ) (7)

D. Triangle coefficient Cyiangie

((k)=7.50), for whichC,ua=5.63x10°. of nodes that are pointed to by bathand 8. We define
B. Incoming clustering coefficientC;, > > i A, B)Koul B)
a  BeGyonda)

Suppose a given node has in-degred;,(«). The maxi-
mal number of edges existing between the nodes j «)
is Kin(@)[ kin(@) —1]. Denotei 4o @) as the actual number

of edges existing between these edges. We define the incombe triangle coefficienCiangie Signifies the extent, if there is
ing clustering coefficient as a directed edge from nodeto nodeg and there is a directed

edge frompB to nodev, there will also be a directed node
from « to y. Calculation revealed thalznge=0.011.

Ctriangle= N . (10)

;’ i actual @)/ [Kin((@) (Kin(@) = 1)]

Cin= NT : (8 VI. CONCLUSION AND DISCUSSION

In this work we have used a revised Krapivsky-Rodgers-
whereZX |, indicates summation over all the nodes whose in-Redner model to investigate the degree distribution of grow-
coming edges are larger than 1, adis the total number of  ing random network and to investigate whether such a kind
nodes with this property. We find tha;,=0.0044. This  of growing network could be regarded as a small-world net-
value indicates that the degree of cliqueness of the upstreaiork. After excluding the possibility of self-connectipRig.
neighbors of a given node is usually very small. For a com-(a)] and requiring that there is at most one directed edge

pletely random graphC;,=5.63x 10" °. from one node to any another nofleig. 1(b)], the Monte
Carlo simulation demonstrated that scale-free network with
C. Outgoing clustering coefficientC,, degree distribution coefficientless than 2 can be generated.

And it is also revealed that the average interactions between
the nodes that belong to the downstream group of a particu-
lar node is very strong, suggesting that the growing network
at the same time forms a “small world.” The strong interac-

tion in the downstream group of a particular node was sug-
gested to be closely related to the existence of several

The definition of the outgoing clustering coefficie,,
is similar to that ofC;,. Suppose a particular node has
Kou{ @) outgoing edges, andyo @) is the total number of
edges between the nodes@you (@), then

E " actual @)/ Koul @) (Koul( @) —1)] “popular” nodes that are pointed to by a large fraction of the
c. == (9) total population in the node system. Previous efforts often
ot N” ’ predicted that the scaling exponenshould be greater than

2, and there are still not many efforts to understand why
whereN” is the total number of nodes whose out degree ismany scale-free networks are at the same time small-world
larger than 1. We findC,,=0.229 for the present growing networks. It is hoped that the present work will help to im-

016125-5



HAIJUN ZHOU PHYSICAL REVIEW E66, 016125 (2002

prove our understanding of the occurrence of scale-free netntermediate degrees. This may explain why a dramatic
works with »<<2 and to improve our understanding of the decrease in scaling exponents could be observed.
close relationship between scale-free and small-world net-
works.
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