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Scaling exponents and clustering coefficients of a growing random network

Haijun Zhou
Max-Planck-Institute of Colloids and Interfaces, Potsdam 14424, Germany

~Received 7 March 2002; published 25 July 2002!

The statistical property of a growing scale-free network is studied based on an earlier model proposed by
Krapivsky, Rodgers, and Redner@Phys. Rev. Lett.86, 5401~2001!#, with the additional constraints of forbid-
ding self-connection and multiple links of the same direction between any two nodes. Scaling exponents in the
range of 1 –2 are obtained through Monte Carlo simulations and various clustering coefficients are calculated,
one of which,Cout , is of the order of 1021, indicating that the network resembles a small world. The
out-degree distribution has an exponential cutoff for large out degree.
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I. INTRODUCTION

To study the statistical property of a complex system co
posed of many interacting individual components, it is oft
helpful to map the system into a network of nodes and lin
~edges!. Each node in this network represents one compon
of the real system and the interaction, if there is any, betw
two components is denoted by an edge, either directed
undirected, between the two corresponding nodes in the
work. One quantity of interest is the node-degree profile
the formed network: How doesn(k), the total number of
nodes with a given numberk of links attached~the node
degree!, scales withk? Empirical observations revealed th
many social and biological networks have the scale-f
property@1,2#, that is,

n~k!;k2n ~1!

ask becomes large enough. The scaling exponentn is typi-
cally in the range of 2,n,3; but there are evidences th
some networks have scaling exponents in the range of
@3# while a few other networks have scaling exponents lar
than 3 ~for a collection of experimental data, please refer
Table II of Ref.@2#!.

To explain the scale-free characteristics, one appea
mechanism is to assume that the network~1! keeps growing
and,~2! during this growth process, new edges are genera
and are attached preferentially to those nodes that hav
ready been attached by a large number of edges@1#. Based
on this mechanism several models have been sugge
@1,4–6#, but they predicted the scaling exponentn to be
greater than 2, thus failed to explain the behavior of th
networks with smallern. In Ref.@7# this ‘‘preferential attach-
ment’’ mechanism was questioned partly because of this
parent discrepancy between theory and empirical data
Ref. @8# it was shown that if one assumes that a network
growing accelerately, it is possible to generate scaling ex
nent in the range between 3/2 and 2. However, it is still
clear whether or not this condition is absolutely necessar
explain experimental observations.

An emerging property of almost all the so-far studi
scale-free networks is that they can at the same time be
sified as small-world networks@9#. That is,~i! the diameter
of the network scales as ln(N), whereN is the total number of
1063-651X/2002/66~1!/016125~6!/$20.00 66 0161
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nodes in the system, and~ii ! the clustering coefficientC is
independent ofN and is thus much greater than that of
random network (.^k&/N, where ^k& denotes the averag
node degree of the network!. On the theoretical side, it wa
confirmed that growing networks generated by the mec
nism of preferential attachment will typically have diamet
scales as ln(N) ~see, for example, Ref.@10#!. However, the
original Baraba´si-Albert model@1,2# predicted a very smal
clustering coefficientC;N20.75. The clustering coefficients
for other models@4–6# were not reported.

To improve our understanding on scale-free networks
this work two questions are addressed: Will it be possible
generate a scale-free network with scaling exponentn,2
based on the preferential attachment mechanism? Will it
possible for a scale-free network generated in this way
have relatively constant clustering coefficients? We ans
these questions confirmatively by studying a revis
Krapivsky-Rodgers-Redner model@4# with Monte Carlo
simulation approach.

II. THE GROWING NETWORK MODEL

The Krapivsky-Rodgers-Redner model@4# is a general-
ized version of the original Baraba´si-Albert model on scale-
free networks@1#. It has the following key elements:~i!
edges are directed;~ii ! new nodes are added into the netwo
and are attached preferentially to existing nodes with lar
in degrees; and~iii ! creation of edges between ‘‘old’’ node
are possible and a newly created edge also prefers to a
to nodes with larger degrees. This model is general in
sense that it takes into account directional interactions of
real network systems, and that the growth of the network
not solely caused by the inclusion of new nodes but also
result of the increased interactions among the existing no
of the system. It can be corresponded to the real syst
including the World Wide Web~WWW!, the Internet, the
food web, the transportation network, the email network, e
Because of its generality, we reexamine this model in
present work to illustrate the property of growing scale-fr
network.

We noticed in the original Krapivsky-Rodgers-Redn
model@4# that the growth process permits the following tw
possibilities illustrated in Fig. 1:~1! a directed edge can
originate from and end into the same node~self-connection!
©2002 The American Physical Society25-1
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and ~2! there can be more than one edge of the same di
tion between two nodes~multiconnection!. Allowing these
two possibilities makes analytical calculations possible a
these authors found that in the growing network, both
in-degree and the out-degree distributions follow the pow
law @4#:

nin~k!;k2n in, 2,n in521pl,`, ~2!

nout~k!;k2nout, 2,nout5111/~12p!1mp/~12p!,`,
~3!

(p, l, and m are the three adjustable model paramete!.
Although the permission of self-connections and multico
nections might be reasonable for some networks~such as
WWW pages, in which a page can have several links
another page and it can have a link to bring the reader f
one portion to another portion of the same page!, it may fail
for other kinds of networks~in a co-authorship network@11#,
it is meaningless for an author to be the co-author of hims
herself; and in a food web@12#, there is at most one edge o
the same direction between two species!. Because of the
preferential attachment mechanism, if a node already h
large number of incoming and outgoing edges, it has a g
possibility to form self-connections and by doing so
dominance is further amplified; the inclusion of multiconne
tion could lead to similar effects. As a result, edges m
concentrate on just few nodes, making the scaling beha
steeper. In the present work, the two kinds of edges liste
Fig. 1 are discounted. Because of the reasoning outli
above, scaling exponents 1,n,2 might occur in a growing
network without self-connection and multiconnection. Th
point will be checked by Monte Carlo simulation.

III. MONTE CARLO SETUP

The revised Krapivsky-Rodgers-Redner model is stud
by Monte Carlo~MC! simulation. Started with a single nod
at each step:

~i! With probability p, a new node is created and a d
rected edge from it to an existing target nodeb is set up. Of
all the N existing nodes,b will be selected with probability
@4#

Pattach~b!5
kin~b!1l

E1lN
. ~4!

FIG. 1. Self-connection~a! and multiconnection of the sam
direction ~b! are forbidden in the present simulation.
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c-

d
e
r

-

o
m

f/

a
d

-
y
or
in
d

d

In the above equation,kin(b), the in degree, is the total num
ber of incoming edges of nodeb; l is a constant signifying
the ‘‘initial attractiveness’’ of a node@6#; and E is the total
number of edges in the system before this new edge is
ated.

~ii ! With probability q512p, a new edge pointing from
one nodea to another nodeb is created, provided that~1!
E,N(N21), ~2! a andb are not identical, and~3! there is
no preexisting directed edge froma to b. The probability
that a andb will be selected is governed by the probabili

Pconnect~a,b!5
@kout~a!1m#@kin~b!1l#

(
g

(
d

8 @kout~g!1m#@kin~d!1l#

, ~5!

wherekout(a) denotes the out degree of nodea; m is another
constant with similar physical meaning asl; (d8 denotes the
summation over all the nodesd, which is not yet approached
by a directed edge from nodeg.

For large system sizeN it turns out to be quite inefficien
and complicated when performing procedure~ii ! based on a
direct application of Eq.~5!. This is partly because of the fac
that, after a new edge has been created between nodesa and
b, one must update the value of the summation in Eq.~5! by
O(N) iterations. To speed up procedure~ii !, the selection of
two nodes and the connection of an edge between the
finished actually through the following way:

~1! Select an outgoing nodea with probability @kout(a)
1m#/(E1mN).

~2! Select an incoming nodeb with probability @kin(b)
1l#/(E1lN).

~3! If a and b are identical, or if there is already a d
rected edge froma to b, repeat steps~1! and ~2!; if else,
accepta andb and update the system.

It is not difficult to prove that by this method the prob
ability for nodesa andb to be chosen is identical to Eq.~5!.

The algorithm code is written in C11 language@13#,
with some of its standard containers~includingmapandset!
being exploited.

To estimate the scaling exponents from the simula
data, we use two methods. One can directly fit the data w
Eq. ~1!. Alternatively, one can define the cumulative degr
distribution by

P~k!5 (
k8>k

n~k8!;k2(n21), ~6!

and from the cumulative distribution data an estimation
the value ofn could be obtained.

IV. DEGREE DISTRIBUTION OF THE GROWING
NETWORK

In the growing network model, there are three adjusta
parameters, namely,p,l, andm. Figure 2 shows the relation
between the average number of nodes and the in degree
out degree for both the original and the revised Krapivs
Rodgers-Redner models. Figure 3 shows the correspon
cumulative degree distributions for the two models. The n
5-2
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work is the result ofN5106 growing steps.
At p50.133 334~a new node will be included on averag

after every 7.5 steps!, l50.75, andm53.55, the original
model@4# predictsn in52.1 andnout52.7. From the MC data
we obtain thatn in52.06660.014 andnout52.62660.036, in
close agreement with the analytical values. At these sa
parameters, the revised model hasn in51.92560.007 and
nout52.269. Thus, exclusion of self-connection and mu
connection leads to decreased values for the scaling e
nents. Other quantitative differences are:

~1! In the revised model there is a cutoff in the in-degr
distribution; no node has in-degreek.93103. While in the
original model, there are nodes with in degrees as large
k543105.

~2! In the revised model the out-degree distribution has
exponential cutoff aroundk5250; while in the original

FIG. 2. The profiles of in-degree~a! and out-degree~b! distri-
bution atp50.133 334,l50.75, andm53.55, after a growing pro-
cess of 106 steps. Square symbols are the data for the orig
Krapivsky-Rodgers-Redner model and diamonds are the data
the revised model. Each data point is the average over 20~dia-
monds! or 10 ~squares! realizations of the network. The thin soli
line has a slope of22.066 in ~a! and 22.626 in ~b!. The thin
dashed line has a slope of21.925 in ~a! and 22.269 in ~b!. The
average number of nodes in the revised network is 133 271, and
average number of edges is 999 984.
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model, there are nodes with out degrees as large ak
51.53104.

~3! The value ofn(k) is much larger in the revised mode
than in the original model for a givenk ~less than the cutoff
value!. This holds both for the in-degree distribution and f
the out-degree distribution.

These observations lead to the following picture: By p
hibiting self-connection and multiconnection, edges th
originally belonged to just few ‘‘supernodes’’ are now redi
tributed to the nodes of small or intermediate in and o
degrees. Consequently, the number of nodes with small
intermediate node degrees increases considerably, resu
in a smaller scaling exponent in the power-law decrease
the distribution and a cutoff in the tail of this distribution.

In Fig. 4 we demonstrate the simulation result when
probability of node addition is changed top50.05 ~a new
node will be included on average after every 20 steps! while

l
or

he

FIG. 3. In-degree~a! and out-degree~b! cumulative distribution
for the data sets in Fig. 2. The solid lines correspond to the orig
model, and the dashed lines to the revised model. From th
curves, we estimaten in52.06660.014 ~the original model! and
n in51.92560.007 ~the revised model!. nout52.62660.036 for the
original model. The out-degree cumulative distribution of the
vised model does not fit well to the power law. Therefore, the o
degree scaling exponent is not estimated by this method but
direct fit to the distribution in Fig. 2~b!, resulting innout52.269.
5-3
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for the other two parameters the same values are kept a
Fig. 2. In these parameters, the original model predictsn in
52.04 ~theory! and 2.01860.015 ~MC! and nout52.24
~theory! and 2.19060.014 ~MC!; while the revised mode
has an in-degree exponentn in51.67260.003 and an out-
degree exponentnout51.764, both of which are markedl
smaller than 2.

Therefore, the exclusion of self-connection and multico
nection can change the scaling exponent of the scale-
network dramatically when each node has a relatively la
average node degree. It can be anticipated that similar be
ior will be observed when the initial attractiveness para
eters,l andm, of each node are varied. It is therefore po
sible for the present model to explain networks with scal
exponentn,2.

However, could the observation of scaling exponents
,n,2 be an artifact caused by finite-size effects? In Fig
the calculated in-degree scaling exponent is plotted a

FIG. 4. The profiles of in-degree~a! and out-degree~b! distri-
butions at p50.05, l50.75, m53.55, and 106 growing steps.
Squares~averaged over 10 realizations! correspond to the origina
model and diamonds~averaged over 20 realizations! to the revised
model. The thin solid line has slope22.018 in~a! and22.190 in
~b!. The thin dashed line has slope21.672 in~a! and21.764 in~b!.
In the revised network, the average number of nodes is 49 831
the average number of edges is 999 860.
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function of the total growth steps. This figure strongly ind
cates that even for an infinite system the scaling expon
will still be less than 2.

Adamic and Huberman@7# studied the WWW by map-
ping each web domain~rather than each web page! as a
single node, and they reported an in-degree scaling expo
of n in51.94. Mossa and co-workers, upon their reinterpre
tion of the WWW data of Baraba´si and Albert@1#, reported
an exponent ofn51.25 @14#. The email network studied in
Ref. @15# has a scaling exponent in the range 1.47,n
,1.82. And even smaller scaling exponents are reporte
several other networks@2#. To attain quantitative agreemen
to these empirical data, one needs nevertheless more i
mation to help fixing the values of the adjustable paramet

A persistent property of the revised network model is th
there is a rapid decay in the out-degree distribution@which
occurs atkout.400 in Fig. 4~b!#. Such a rapid decay was no
observed in the original model. This feature is also absen
the in-degree distribution of both the revised and the origi
models, although the in-degree distribution of the revis
model does have a cutoff for largek. Experimentally, it was
reported that both the WWW network@14,16# and the email
network@15# show exponential cutoff in the node-degree d
tribution.

V. CLUSTER COEFFICIENTS OF
THE GROWING NETWORK

As was mentioned in the Introduction, many real sca
free networks at the same time show small-world behav
@2#, having small diameters and being highly clustered. F
the original Krapivsky-Rodgers-Redner model, it has be
reported in Ref.@10# that the average minimum path scal
as ln(N). We anticipate this to hold also for the revise
model. Here we focus on the clustering characteristics of
revised model system, with the parameters setting equa

nd

FIG. 5. The relation between the in-degree scaling exponent
growing steps for the original~squares! and the revised~circles!
model b. The parameters are set equal to that of Fig. 4, namep
50.05, l50.75, andm53.55. The thin dotted line indicates th
theoretical prediction ofn in52.075 for the original model.
5-4
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those of Fig. 2, i.e.,p50.133 334,l50.75, andm53.55,
and a total of 106 growing steps.

A. Mutual-connection coefficientCmutual

DenoteGdown(a) as thecompleteset of nodes that are th
‘‘downstream’’ neighbors of nodea, namely, there exists a
directed edge froma to each node inGdown(a); similarly we
defineGup(a) as the complete set of nodes that are the ‘‘u
stream’’ neighbors of nodea. uGdown(a)u means the size o
setGdown(a).

The mutual-connection coefficient is defined as

Cmutual5

(
a

uGdown~a!ùGup~a!u/uGdown~a!u

N
, ~7!

which signifies to what extent the downstream neighbors
one node intersect with their upstream neighbors. The va
of Cmutual averaged over 20 realizations of the growing n
work is 0.0010. This indicates that the interaction betwe
one node and its ‘‘neighbors’’ in the network is usually n
bidirectional. However, this value is still much larger th
the value for a random network of the same sizeN
5133 271) and the same average degree of out-going e
(^k&57.50), for whichCmutual55.6331025.

B. Incoming clustering coefficientCin

Suppose a given nodea has in-degreekin(a). The maxi-
mal number of edges existing between the nodes inGup(a)
is kin(a)@kin(a)21#. Denotei actual(a) as the actual numbe
of edges existing between these edges. We define the inc
ing clustering coefficient as

Cin5

(
a

8 i actual~a!/@kin~a!~kin~a!21!#

N8
, ~8!

where(a8 indicates summation over all the nodes whose
coming edges are larger than 1, andN8 is the total number of
nodes with this property. We find thatCin50.0044. This
value indicates that the degree of cliqueness of the upstr
neighbors of a given node is usually very small. For a co
pletely random graph,Cin55.6331025.

C. Outgoing clustering coefficientCout

The definition of the outgoing clustering coefficientCout
is similar to that ofCin . Suppose a particular nodea has
kout(a) outgoing edges, andi actual(a) is the total number of
edges between the nodes inGdown(a), then

Cout5

(
a

8 i actual~a!/@kout~a!~kout~a!21!#

N9
, ~9!

whereN9 is the total number of nodes whose out degree
larger than 1. We findCout50.229 for the present growing
01612
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network. Compared with the small values ofCmutualandCin ,
such a large value ofCout is surprising. It suggests that th
average interaction between two nodes belonging to
same downstream group of a given node is considera
strong. How to understand this kind of asymmetry, name
1;Cout@Cin? We suggest the following possibility: In th
network, there are some nodes that are so popular that a
population of the whole nodes will have an edge pointing
them @see Fig. 2~a!#. Consequently, these nodes will hav
great possibility to belong to the downstream group of a
particular node, and they will also have great possibility
be pointed to by other members of this group, makingCout to
be proportional to unity. However, the number of nodes
cays quickly when the out degree increases to about 250@see
Fig. 2~b!#. Therefore, in the network there is no node that
so ‘‘generous’’ that it points to a large population of th
whole network. This may make the value ofCin small. In
other words, it might be the existence of a steep cutoff in
out-degree profile that accounts for the difference in the c
tering coefficientsCout andCin .

D. Triangle coefficient Ctriangle

For a particular nodea, suppose nodebPGdown(a).
Then i n(a,b)5uGdown(a)ùGdown(b)u is the total number
of nodes that are pointed to by botha andb. We define

Ctriangle5

(
a

(
bPGdown(a)

i n~a,b!/kout~b!

N
. ~10!

The triangle coefficientCtrianglesignifies the extent, if there is
a directed edge from nodea to nodeb and there is a directed
edge fromb to nodeg, there will also be a directed nod
from a to g. Calculation revealed thatCtriangle.0.011.

VI. CONCLUSION AND DISCUSSION

In this work we have used a revised Krapivsky-Rodge
Redner model to investigate the degree distribution of gro
ing random network and to investigate whether such a k
of growing network could be regarded as a small-world n
work. After excluding the possibility of self-connection@Fig.
1~a!# and requiring that there is at most one directed ed
from one node to any another node@Fig. 1~b!#, the Monte
Carlo simulation demonstrated that scale-free network w
degree distribution coefficientn less than 2 can be generate
And it is also revealed that the average interactions betw
the nodes that belong to the downstream group of a part
lar node is very strong, suggesting that the growing netw
at the same time forms a ‘‘small world.’’ The strong intera
tion in the downstream group of a particular node was s
gested to be closely related to the existence of sev
‘‘popular’’ nodes that are pointed to by a large fraction of t
total population in the node system. Previous efforts of
predicted that the scaling exponentn should be greater than
2, and there are still not many efforts to understand w
many scale-free networks are at the same time small-w
networks. It is hoped that the present work will help to im
5-5



ne
e

ne

ib
se
m
rs
l o

tic

on
al-

HAIJUN ZHOU PHYSICAL REVIEW E66, 016125 ~2002!
prove our understanding of the occurrence of scale-free
works with n,2 and to improve our understanding of th
close relationship between scale-free and small-world
works.

The present work suggests that, by excluding the poss
ity of self-connection and multiconnection, many of tho
edges that were associated with several nodes of extre
large in or out degrees in the original Krapivsky-Rodge
Redner network, are now redistributed to nodes of smal
he
e
g

tri

e

y

01612
t-

t-

il-

ely
-
r

intermediate degrees. This may explain why a drama
decrease in scaling exponents could be observed.
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